
c h a p t e r  a

Unleashing the  
Geek Within



C o d i n ’  fo r  th e  w e bA-2

Learning to write code is like learning a foreign language. At first, 
that language seems incomprehensible. Then you start building 
your vocabulary—the words that make up the language—and you 
start to learn the syntax—the order in which the nouns, verbs, and 
adjectives appear. Soon, you are stringing together sentences to 
convey your ideas and, eventually, communicating with ease. 

Programming is no different. When you first see code, it looks like 
a bunch of hieroglyphics, but every programming language has its 
own vocabulary of words and symbols and its own equivalent of 
verbs, nouns, and adjectives (variables, functions, objects, and so 
on). In time, and with application, you can read code as easily as 
you read the words on this page. 

Anyone can code. Coding is not a black art, but requires the same 
process as learning to write music, speak Spanish, or master any 
other technical skill. The same approach applies: learn the princi-
ples, deconstruct the work of others, and practice, practice, practice. 

If you want to understand coding principles and start to learn how 
to program a Web site from front to back—from interface to data-
base—Codin’ for the Web is a good place to start. Hard-core pro-
gramming books will certainly be more intelligible after you read 
this one.

Here, we’ll briefly consider the creative process as it applies to  
Web site development and how the ideas for a site become code—
code that defines the logic and processes that deliver the user  
experience of your design.

Some designers I know say “Oh, I’m right-brained, I could never 
program,” with the deep-seated and, I think, erroneous view that 
programming is purely the left-brained application of logic and  
process and has nothing to do with the creativity that is required  
for design.

I have two comments in regard to this line of thinking.



A-3

First, if you really want to be an effective Web designer, code is the 
delivery mechanism of your vision, so you have to make the leap 
into understanding how code works if you are to reach your full 
potential in the world of the Web.

Second, programming is a creative endeavor in itself, as there  
are numerous ways to use code to solve any development prob- 
lem, even though the end result is lines of text rather than a  
colorful comp. 

That said, coding is, without doubt, an exercise in precision, 
patience, and perseverance, virtues that some designers may feel 
they lack. If a page layout you are designing has a graphic that is a 
pixel out of place, it probably won’t affect the overall look, but one 
misplaced comma can bring your code to its knees. Partly because 
of this need for total accuracy, when your Web pages spring to life, 
populated by information that was pulled from a database on a dis-
tant server, you can’t beat the sense of achievement.

So my advice is to strive to be more whole brained and realize that 
both user-experience-related tasks (information architecture and 
visual design) and programming tasks (database development and 
writing code) are creative and technical endeavors, and success in 
either is predicated on your technical skills.

Form versus Function
To explore these broad ideas further, let’s consider the tasks that 
designers and programmers undertake in the design process  
(Table A.1).

Ta b le  A .1  Design and Programming Tasks

D e s i g n - R e l ate d  Ta s k s P r o g ra  m m i n g - R e l ate d  Ta s k s

Business requirements Functional specifications

User experience Process flow

Information architecture Technical requirements

Aesthetics Code development

Interface design Testing

Usability Quality assurance

U n le a s h i n g  th e  G e e k  W ith i n   :  F o r m  v e r s u s  Fu n c ti o n



C o d i n ’  fo r  th e  w e bA-4

Web designers’ tasks focus on creation of the overall design, or  
form, of the site: what features will the site offer, how will the user 
interact with it? With form comes nuance: some users may like one 
design comp, and others may prefer a second, and neither is inher-
ently wrong. Your task is to develop a solution that works best for 
most users.

Programmers’ tasks focus on creation of the site’s functionality: 
what data is required to enable the user to interact with the site, and 
how will the code process the data obtained from this interaction? 

Here’s a simple example: Did the user submit a properly formed e-
mail address? When the user submits an e-mail address, our code 
can test the following: that it starts with some text characters (but 
no symbols), which are followed by an @ character, then more text, 
and then a period followed by no more than four characters. For 
instance, charles@bbd.com would pass, but _someone. @@hello.world 
would not. We can create the test using a code structure called a 
regular expression, and if the address passes that test, it’s formed 
correctly as an e-mail address. Here, as with some aspects of coding, 
there is no nuance—the test will simply respond TRUE or FALSE. 

Use Cases
Use cases can be used to describe the back-and-forth interactions 
between the user and the code for each of the site’s functions. Use 
cases are a great bridge between the conceptual ideas and the actual 
code. The basic principle of use cases is to show how actors—your 
Web site’s various users, in the scope of this discussion—interact 
with systems—the various functional parts of your Web site. By 
mapping these interactions for every task you want your site visitors 
to undertake, you not only think through exactly how these interac-
tions will occur, but also lay the foundations for planning how the 
associated code will be written. 

The Unified Modeling Language, known as UML, is a quite com-
plex and formalized tool for creating use cases, and it can help  
you break down and convey to others the interactions of very  
complex systems.

To illustrate how effective use cases can be, let’s look at a simple 
one-actor, one-system example with a basic back-and-forth set of 
steps. To use a non-Web analogy, the idea might be “Let’s build a 
machine with a screen and buttons where users can deposit checks 

 

If you want to learn more about 

use cases and how to write them, 

read Writing Effective Use Cases 

by Alistair Cockburn, published by 

Addison-Wesley.	  



A-5

and withdraw money!” but of course code supports the operation of 
an ATM. 

Sketching out use cases is a great way to prepare for a meeting with 
a programming team. Figure A.1 shows a simple use case for with-
drawing cash from an ATM.

	

Sketching a use case for each process and reviewing the use cases 
with clients and other members of your production team early in  
the production cycle can save hours of time because everyone will 
understand in detail how each process will flow before coding begins. 

Use cases are of huge value to programmers in determining what 
data is needed within the system and from the user, and what pro-
cesses must act on that data, to support each of the user-system 
transactions. Programmers also look for pieces of functionality 
that occur repeatedly in the use cases (such as a testing of whether 
the user has the right login credentials to view a particular page) 

Fi g u r e  A .1  A simple use case 
sketch: withdrawing cash from  
an ATM.

Fi g u r e  A .1  A simple use case 
sketch: withdrawing cash from  
an ATM.

 

For simplicity, Figure A.1 does not 

show edge cases—the things that 

usually don’t happen, but sometimes 

do. In this example, edge cases 

would show what the system does if 

the card is expired or if the user has 

insufficient funds in the account.

Actor System

Inserts card

Ready;  
displays “Enter Card to Start”

Enters PIN

Checks for valid card type 
Requests PIN

Selects account

Validates PIN

Enters amount

Displays user’s accounts

Takes cash

Displays “Enter Amount”

Clicks “No”

Checks for funds

Takes card

Displays “Another Transaction?”

Ejects card

Selects “Withdrawal”

U n le a s h i n g  th e  G e e k  W ith i n   :   U s e  C a s e s



C o d i n ’  fo r  th e  w e bA-6

and engineer these as stand-alone blocks of code called functions 
that can be accessed by many other pieces of the code, and there-
fore have to be written only once. Chapter 1 of Codin’ for the Web 
explores functions in depth.

In short, the programmer’s task is to break down the required func-
tionality of the site into code components that work together to 
accept inputs (data generated by user actions) and provide outputs 
(data returned to the user from the system) so that the user can suc-
cessfully complete the tasks that the site supports.

Dynamic Web Sites
Many Web sites consist of static pages—pages that are unchanging 
or, to use a programmer’s term, hard-coded; the code, and therefore 
its related page’s appearance, is exactly the same each time it loads 
into the user’s browser. These static-page sites limit the user to basic 
tasks like clicking links to navigate between pages and submitting 
simple forms. There is no way for the site to provide any significant 
degree of response to users’ actions.

A Web site that is capable of accepting and then responding to user-
supplied data is called a dynamic site. While dynamic is an overused 
word that has come to mean exciting or energetic, here we refer to 
the original meaning of the word:  “changing over time.” Dynamic 
sites are characterized by pages that can serve up variations of the 
site’s available content based on user input. Perhaps the best-known 
and most illustrative example of a dynamic site is Amazon.com, 
which delivers customized pages based on users’ searches, person-
alization, and previous browsing and shopping activity (Figure A.2).

Personalization like this requires that the server delivering the 
pages track each user’s computer from visit to visit. This tracking is 
achieved through the use of cookies. A cookie is a small data file that 
a site stores on the user’s computer and is typically created when 
you first visit a site or when you enter some personal information—
when you make your first purchase, for example. 



A-7

In the case of Amazon, the cookie contains a user ID that references 
your information in the Amazon databases, so Amazon can read the 
cookie’s ID back to its servers each time you request a page and then 
instantly look up information such as your name and previous page 
views and purchases. 

Fi g u r e  A . 2  A customized Amazon.
com page. Note the numerous 
locations on this page that are 
customized (highlighted in red) 
for this visitor or that offer links to 
customized pages (highlighted in 
green).

The business rules Amazon has programmed into its site then use 
this data to cause the site to serve up features such as a page with 
your name, a link to recommendations based on your previous pur-
chases, and perhaps an offer for some other items that might appeal 
to you—all within a few seconds of your typing www.amazon.com and 
pressing the Enter key on your keyboard. 

It’s a bit like walking into your favorite store and being greeted by  
a salesperson who immediately says, “Welcome back, Kate! How  
did you like that flat-screen TV we sold you last week—check out 
this great DVR that works perfectly with it.” Clearly, this kind of per-
sonalization is effective, and Amazon has built its entire site, and 
therefore its entire business, around personalization of the site for 
every visitor.

Virtually all dynamic sites are built on a simple principle that is 
explored in detail through the course of Codin’ for the Web:  
three-tier architecture.

U n le a s h i n g  th e  G e e k  W ith i n   :  D y n a m i c  W e b  S ite s



C o d i n ’  fo r  th e  w e bA-8

Three-Tier Architecture
The three tiers of three-tier architecture are the interface, middle-
ware, and database (Figure A.3).

Fi g u r e  A . 3  Three-tier 

The database and middleware reside on Web servers at the Web 
site’s hosting facility, be it an ISP or your company’s data center, 
and the interface, while served from the Web server, is viewed in the 
user’s browser. 

We’ll start with a quick overview of each tier; later in this chapter, 
we will examine the tiers and the coding languages and techniques 
associated with them in greater depth.

Interface
The interface is the part of the site that the users sees and interacts 
with in the Web browser. The code that describes the interface is run 
(or executed) by the browser and enables the user to view a page’s 
content and, through the use of links and forms, interact with your 
site. When you create the user interface, you will usually use three 
programming languages:

•	 XHTML (a syntactically stricter HTML variant) defines the 
page’s structure.

•	 CSS defines the page’s presentation.

•	 JavaScript defines the page’s behavior.

Interface 

CSS, XHTML, 
JavaScript

User agent

Database 

for example, 
MySQL, SQLserver, 

or Oracle

Database server

Middleware 

for example, PHP, 
.asp, or .NET

Web server

Scripts  
of process  

queries and 
build pages

Internet

Queries from 
clicked links, 

data from forms

Customized 
pages

SQL  
queries

Data 
records

 

Database server

 

The interface can also deliver 

various media files such as 

QuickTime movies and Adobe  

Flash animations. Playback of  

these kinds of media are enabled  

by plug-ins, which is files that  

extend the browser’s capabilities.



A-9

Middleware
Middleware is a generic term given to the software on the Web 
server that receives the user inputs and serves up the dynamic Web 
pages. You can think of it as sitting between the user interface and 
the database, controlling the processing of user queries and the 
transactions between the user interface and the database. 

Middleware can further be divided into two parts: the platform and 
the scripts (pieces of code) it runs. The platform, as its name sug-
gests, provides the basis for development. It defines the language or 
languages that may be used in the scripts and acts as the engine that 
processes the scripts. Common examples of middleware platforms 
are PHP (open source) and .NET, pronounced dot-net (Microsoft).

Middleware is where the real processing work of your Web site is 
done and where the greatest programming effort is required. It’s the 
middleware that enables your pages to be dynamic.

For now, think of middleware as a system that does the following:

•	 Receives requests from the user interface.

•	 Makes calculations, comparisons, and database queries using 
scripts (pieces of code) written to handle each type of request.

•	 Writes the results to a Web page generated from a page tem-
plate (we’ll discuss page templates in more detail later in this 
chapter). 

•	 Serves the finished Web page back to the browser.

There are also specialized applications that serve the role of middle-
ware such as content management systems (CMSs) and customer 
relationship management (CRM) systems. Sometimes multiple mid-
dleware products such as these have to work together and jointly 
provide the data for the page that is delivered to the user.

U n le a s h i n g  th e  G e e k  W ith i n   :  T h r e e -Ti e r  Ar ch ite c t u r e



C o d i n ’  fo r  th e  w e bA-10

Database
The database holds the information relating to your Web site. It may 
contain users’ e-mail and password information, the details of prod-
ucts in an e-commerce store, or the scores of the games users play 
on your site. Whenever your site collects or generates a piece of data 
that will be needed in the future, that data goes into the database. 

Databases are made up of numerous related tables. These tables 
are each a grid of rows and columns, much like a Microsoft Excel 
spreadsheet, containing related pieces of data. The development 
of good database structure is essential to a site’s performance (how 
quickly it responds to user requests) and its scalability (a measure of 
the ease of expanding the initial structure in the future).  
 

Anatomy of the Interface
The primary purposes of the user interface are to link the user to the 
content of your Web site and to enable the user to provide inputs to 
the system.

Our focus here is not on the aesthetics of design, so we will not get 
into a discussion of how to design interfaces here. Instead, we’ll 
take a development-focused look at the user interface, because it’s 
important to understand from a coding perspective the interface’s 
components and underlying structure.

Interface Components
Everything in a user interface can be considered to be part of one or 
more of five types of components (Figure A.4):

•	 Content is the generic term for the information that a site  
delivers: text, images, video, animations, sound, and download-
able files.

•	 Orientation describes the components that help users under-
stand where they are in relation to the rest of the site: section 
titles above page titles, highlighted navigation links that indi-
cate the current page or section, and breadcrumbs that list 
sequentially the pages that are traveled from the home page to 
the current page are all aids to orientation. 

 

As suggested by Figure A.3, the 

middleware and database typically 

run on separate servers. This 

approach provides improved 

performance for the site, allows it 

to be scaled more easily to handle 

more traffic through the addition 

of more Web or database servers, 

and provides an additional level 

of security for the data, as users do 

not communicate directly with the 

database server—only the Web 

server can do that.



A-11

•	 Directions provide as-needed instruction to the user. Key 
examples are error messages and feedback. Directions clearly 
explain both successes and errors in tasks and offer options 
for what to do next: “Transaction complete! Shop more or 
check out?” or “Our database is busy right now—please wait a 
moment and try again.” Good task feedback = easy-to-use site 
= happy users. Directions are a type of content, and you must 
develop a process to create them.

•	 Inputs are the means by which users can inject data and con-
tent into the system. Forms, image, and file uploading capabili-
ties are examples of inputs. 

•	 Navigation describes the interface components that enable the 
user to move through the content: links, clickable images, and 
menus that act as links are the primary navigation approaches.

It is purely coincidental that you can remember these five compo-
nents by the acronym CODIN.

Fi g u r e  A .4  The interface 
components on a page of the Eddie 
Bauer (eddiebauer.com) Web site: 
content (blue), orientation (red), 
navigation (green), and inputs 
(orange). Note that Eddie Bauer 
keeps the site clean by saving 
directions for when they really add 
value—for instance, the user does 
not need to be told “Click a link to 
view a product.”

A key goal of user-focused programming (that is, programming with 
the user’s needs always in mind) is to always provide relevant navi-
gation and orientation context along with the content. 

U n le a s h i n g  th e  G e e k  W ith i n   :  A n ato m y  o f  th e  I nte r fac e



C o d i n ’  fo r  th e  w e bA-12

Structure of the Interface: Hierarchical Page 
Structure
XHTML and CSS are not programming languages in the true sense 
of the word, as they cannot themselves process data. However, it 
is very important to understand the page structure that XHTML 
provides to a page and how CSS can modify the presentation of 
that structure, because the code we write will output XHTML to the 
user’s browser, and CSS will determine how that XHTML will be pre-
sented.

XHTML provides structure to content. An XHTML page consists of 
elements that are defined through the use of XHTML tags, in either 
an enclosing form such as this:

<p>This is text enclosed in paragraph tags</p>

or a nonenclosing form, such as this:

<img src=”images/my_dog” alt=”My dog” />

If we look at the underlying structure of an XHTML page (xhtml_
template.html in the Chapter B files at the Codin’ Web site is a bare-
bones example of such a file), we see something like this:

<html>

 <head>

   <title>My demo page</title>

 </head>

 <body>

  <div id=”navigation”>

   <ul>

      <li><a href=”about_xhtml”>About XHTML</a></li>

      <li><a href=”about_css”>About CSS</a></li>

   </ul>

 </div>

 <div id=”content_area”>

    <h1>About page structure</h1>



A-13

<p>It’s important to realize that there is a hierarchy of 
tags in every Web page, because this hierarchy is used 
by CSS and JavaScript to locate and modify the elements’ 
appearance or content.</p>

    <a>Learn more</a>

  </div>

 </body>

</html>

The markup consists of two main sections: the <head>, which con-
tains elements that help the browser understand how to display the 
page and provide metadata (data about the page’s data, such as its 
title), and the <body>, which contains the actual content that the user 
sees. It doesn’t really matter in this example what this page actually 
looks like in the browser; what you should understand here is that 
we can also look at the body of this page as shown in Figure A.5.

Fi g u r e  A . 5  Structural hierarchy 
diagram of the XHTML code.

There is a tree-like structure to the markup, with tags nested inside 
one another. For example, we could say that the unordered list (ul 
tag) is a child of the content area division (div tag), and the parent 
of the list items (li tags). The links (a tags) within the list items are 
the unordered list’s descendants (in this case, grandchildren), and 
the body tag is its ancestor (in this case, its grandparent).

This hierarchical structure enables us to target CSS and JavaScript 
at specific tags. For example, the CSS rule div#content_area a 
{color:red;} would color the link in the content div area red, but 
the links in the navigation div area would be unaffected by this rule, 
because the rule states that the link must be a descendant of the 
content area div tag.

body

div div

ph1 aul

li li

a a

U n le a s h i n g  th e  G e e k  W ith i n   :  A n ato m y  o f  th e  I nte r fac e



C o d i n ’  fo r  th e  w e bA-14

Interface Summary
The user interface is the user’s window into your Web site. The 
interface components support five primary functions: the display 
of content, navigation to other pages and sites, orientation to help 
the viewer understand the relationship of the current page to others, 
directions to keep the user on task, and input capabilities to allow 
the user to inject data into the system.

The interface is structured with XHTML markup of nested elements 
tags, and this structure allows the elements and their content to be 
targeted and modified by CSS and JavaScript.

Middleware
Middleware is the brain of your Web site. It is the software that 
resides on your Web server that receives the data sent from the user 
interface, and, using the code you write, checks that the data is in a 
valid format, processes it, and, based on that processing, builds an 
appropriate XHTML page and sends it back to the browser.

Each task that you want your site to perform requires you to write a 
code script to process the data associated with that task. 

For example, if we want a user to be able to sign up for our monthly 
e-mail newsletter, the script that will process the sign-up form 
needs to ensure that the e-mail address supplied is properly format-
ted, write the person’s name and e-mail address in the database for 
future use, and then immediately e-mail the current edition of the 
newsletter to that person. Finally, the script builds a page thanking 
the user by name for signing up and returns the page to the user’s 
Web browser.

For the middleware scripts for your site, you can use something that 
is already written, or you can write the scripts yourself. 

The advantage of writing the scripts yourself is that you can write 
whatever functionality you want, the way you want to write it. The 
disadvantage is obvious: it’s a lot more work.

There are many off-the-shelf middleware scripts that may provide 
the functionality you need. For example, if you want to set up an 
e-commerce store, you might choose osCommerce (PHP based) or 
Miva Merchant (.NET or Unix-based). These products have all the 
basic online store functionality built in, such as features for setting 

 

The Web site www.hotscripts.com is 

an excellent repository of scripts for 

all platforms.



A-15

up customers, organizing products into categories, and providing a 
virtual shopping cart, and therefore require minimal custom coding. 
Of course, the downside is that you must accept the constraints that 
a preprogrammed solution imposes. 

There is a middle ground between totally preprogrammed and do-
it-yourself: open source code. With open source code, you get, as the 
name implies, the source code and are allowed to modify it as you 
see fit, so you can build on others’ work while doing all the custom-
ization you want. Note, though, when using open source code in 
your project, that, depending on the code’s license and your means 
of distributing your code, you too may be required to share your 
changes and additions with others.

If your site is going to provide a large library of content, you might 
select off-the-shelf middleware focused on content management. 
Numerous products—from the simple but effective CityDesk from 
FogCreek; through business-strength products from developers such 
as Ektron, RedDot, and PaperThin; all the way up to massive corpo-
rate solutions such as Documentum and Interwoven—are available.

My advice is, if you are building something that might have been 
built before, such as a store, a forum, or a blog, research the off-the-
shelf solutions before embarking on the more demanding approach 
of building from scratch.

Many sites combine various middleware products to achieve the 
desired functionality. You can fairly confidently guess that the Dell 
site (www.dell.com) is built with a combination of e-commerce and 
content management middleware products, as the site provides 
sophisticated shopping options, where you can select exactly how 
you want your new computer configured, and also vast libraries 
of product information and technical documentation for you to 
browse as you make your purchasing decisions. 

When these kinds of solutions are being developed, things can get 
very complex. Each piece of middleware used must be able to com-
municate with the others, and each may have its own database. 
There can be some thorny issues related to what data is stored 
where. How such databases exchange information can become a 
large engineering initiative in its own right.

Regardless of which of approach you choose, you will find two com-
mon concepts in virtually every middleware system: templates and 
include files.

U n le a s h i n g  th e  G e e k  W ith i n   :  M  i d d le war e



C o d i n ’  fo r  th e  w e bA-16

The Concept of Templates
In the world of dynamic Web sites, each page delivered to the user 
can be unique. Let’s return to the example of Amazon. It’s unlikely 
that anyone else has looked at exactly the same selection of Amazon 
pages you have looked at in the past or bought exactly the same 
combination of products, so the items on the page of recommenda-
tions you see when you log into Amazon today may never have been 
presented to you or anyone else in quite that combination before, 
and after you make your next purchase or view another page, that 
precise combination may never be seen again.

However, clearly, there are significant similarities in every Amazon 
“Recommendations” page. Many elements, such as the top of the 
page, are essentially the same every time, the number of products 
in each row is the same, and the overall formatting of the page’s 
text and layout is the same. Even the position and typeface of the 
“Welcome (your name here), we have recommendations for you” 
line is the same—only the name changes when you, instead of 
someone else, view the page. In short, only the information that 
relates specifically to you is changed.

This customization of what is essentially the same page every 
time is achieved by the use of page templates. Think of a template 
as a recipe from which a page is cooked up. A template contains 
both XHTML code for the static elements of the page, which never 
change, and middleware code elements, which the middleware pro-
cesses and replaces with the dynamic elements that change from 
user to user. 

Here’s a simple example of a template in action. Imagine that the 
user has typed the URL of your home page. A cookie on the user’s 

A Note to the Corporate Designer

Be aware when you are considering buying and integrating existing packages 
that there are some important business issues to examine, such as these: 
What platform (operating system) does each application run on? What lan-
guage you have to use to extend the applications’ functionality? Does each 
application have an application programming interface (API) to enable the 
establishment of real-time communication and data exchange between the 
applications and other systems in the enterprise? If not, is there at least a 
way to schedule data dumps to files that can be read by other components of 
the system, so that close-to-real-time (for instance, hourly or daily) synchro-
nization of the data can be set up? The list goes on.



A-17

computer from when the user previously registered with the site 
enables the middleware to pull the user’s name from the database 
and place it in a variable (a location in memory) called $user_name. 
The home page template’s XHTML contains the following code:

<h2>Welcome back, <?php $user_name ?>, it’s good to see you 
again!</h2>

As you might guess from the code, this is an example from a site 
that uses PHP as its middleware. Instead of directly serving up the 
template, PHP creates a copy of it line by line, and as it does so, it 
looks for PHP tags in the XHTML. Whenever it encounters one, it 
processes it and replaces the PHP tag with the result of the process. 

In this case, PHP looks up the variable $user_name and replaces 
the PHP tag with the string of text it finds there. Once PHP has 
processed the whole page, it serves up the customized copy to the 
user’s browser, and the line of code now might read like this:

<h2>Welcome back, Suzie Q, it’s good to see you again!</h2>

Even a massive site like Amazon may have only a few page tem-
plates, but, in the manner shown here, the middleware can create 
an infinite number of page variations from them—in fact, the fewer 
page templates your site has, the more consistent the overall look 
and feel of the site will appear to be.

An Approach to Templates: Use Only as Many as You 
Really Need

In a typical production team, the design group is responsible for delivering 
the page templates, written in XHTML and CSS, to the programmers so they 
can incorporate these templates into the site. The programmers replace each 
piece of the designers’ placeholder content with the appropriate middleware 
tag, as just described. 

At the start of the site’s development, the design team might first identify just 
three page templates—the Home Page template, the Main Section pages 
template for the pages that link directly to the home page, and a general 
page template that is used for all the other pages.

Each time a new type of content is identified, there is discussion around 
whether this content requires a new template to display it effectively, or 
whether it can be presented within the framework of one of the existing tem-
plates. The addition of another template is usually vetoed unless someone 
can make a valid case for it—more templates mean more code to maintain 
and yet another variation in the site’s look and feel.

U n le a s h i n g  th e  G e e k  W ith i n   :  M  i d d le war e



C o d i n ’  fo r  th e  w e bA-18

The Concept of include Files
Imagine a site with static pages—pages are hard-coded in XHTML 
and have no dynamic elements. Each of these pages almost cer-
tainly has code that repeats on every page: for example, the page 
header with the logo and company name, or the general navigation 
links in a sidebar. Anyone who has had to make changes to these 
areas of such pages has experienced the tedium of opening page 
after page to make the same alteration, and also knows too well the 
hold-your-breath-and-pray moment that accompanies clicking the 
Replace All button when performing a global search-and-replace of 
large chunks of code across dozens of pages.

Middleware enables you to break out each chunk of code that is 
common to multiple pages and move it into a file known as an 
include. Then you simply add an include tag to the page in its place, 
using a line of code like this: 

<?php

include(“includes/main_nav.inc.php”); 

?>

In the same way as the $user_name tag was replaced with a user 
name in the code we discussed earlier, so an include tag in a page is 
replaced with the appropriate include file, which can contain many 
lines of code. Now the navigation element that appears on every 
page of our site is stored and maintained within a single file that 
every page references. Figure A.6 illustrates the include file concept. 
You can see it in action in Chapter 6 of Codin’ for the Web.

The include file concept opens a very efficient process for creating 
pages. If a template can be thought of as an abstraction of a Web 
page, then an include file can be thought of as an abstraction of a 
template. 

We have seen that a template allows us to define dynamic areas 
within our pages. Include files allow us to define common areas 
within our templates. Pages are built from templates, and templates 
can be built, at least in part, from include files. For example, you 
may have five templates to present five different layouts or types of 
content, but each of those templates may have the same main navi-
gation links and the same footer across the bottom of the page. Such 
common elements can each be stored in an include file and refer-
enced by every template using an include tag (Figure A.7). 



A-19

Fi g u r e  A . 6  By breaking out 
common elements of a site’s pages 
into include files, these elements can 
be shared by multiple pages.

Fi g u r e  A .7  In this example, nine 
pages, generated from three different 
templates, all contain the same 
header include file.

U n le a s h i n g  th e  G e e k  W ith i n   :  M  i d d le war e

Header 
include

Navigation 
include

Footer 
include

Sidebar 
include

Page 
template

Pag e  te m p l ate  c o d e  s t r u c t u r e

include header 
include navigation

HTML for content area plus  
middleware tags for custom content

include sidebar 
include footer

Page  
template 1

Page  
template 2

Page  
template 3

Pages from template 1 Pages from template 2 Pages from template 3

Header include



C o d i n ’  fo r  th e  w e bA-20

Such an approach to designing the structure of your site can yield 
huge efficiencies in its development and updating. This kind of 
modular thinking separates the excellent Web developers from the 
merely competent ones and is essential when developing large cor-
porate sites like those of Amazon and Dell.

Middleware Summary
Middleware can come as code in general-purpose languages such 
as PHP and C#, or it can come as specialized applications such as 
customer relationship management, content management, and e-
commerce applications.

Templates containing variables and other code structures enable 
pages to be populated with content, information from databases, 
and the inputs provided by the user, based on the system’s business 
rules, which are expressed in the site’s middleware code.

Include files allow code blocks that are shared by the templates to 
be added to a page at the time that it is generated from a template.

Database
The database is the storehouse for all the data associated with your 
Web site.

Various databases are available, and you usually decide which one 
to use based on the operating system you are using for your Web 
server. If you are building on the Windows operating system, you 
will probably use the Microsoft Internet Information Services (IIS) 
Web server, .NET middleware, and Microsoft SQL Server database. 
Oracle is a powerful database alternative for large enterprise appli-
cations running on Windows. 

For situations with high contention (lots of users attempting to 
access the database at once, such as an instant messaging or  
airline reservations system), you might use a new, powerful con-
tender in the database arena, the ANTs Data Server (which also 
works with Linux).

If you are using an open source operating system, such as Linux 
or Unix, you will probably use PHP middleware and the mySQL 
database, as PHP has been optimized to work with it. PostgreSQL 
is another database that works excellently with PHP and provides a 
number of features that mySQL doesn’t offer.



A-21

Structure of a Database
Databases are made up of tables. If you have ever used an Excel 
spreadsheet, you will be familiar with the grid-based method of 
organizing data used by database tables. The similarity ends there, 
though; database tables have their own data organization rules  
and relate to one another in ways that are very different from 
spreadsheets.

A Web site database usually needs to store many different kinds 
of data. For example, an e-commerce site needs to store customer 
information (name, mailing address, e-mail address, and so on), 
product information (product name, description, SKU, price, and so 
on), and the transactions that customers have made in the store.

A database is queried (asked to perform a task) using Structured 
Query Language (SQL), a language developed especially for  
this purpose.

SQL is used for two processes: data definition—creating, deleting, 
and editing the structure of tables—and data manipulation—add-
ing, modifying, deleting, and retrieving the data in the tables. Data 
definition happens when the structure of the database is first built; 
data manipulation happens every time the middleware accesses the 
database.

Database design focuses on logically dividing the data to be man-
aged into tables. By dividing the data into multiple tables, we create 
a relational database, where relationships between the different 
types of data can be defined. This approach greatly speeds access to 
the data, simplifies management of that data, and most important, 
avoids redundant (repeated) data. Redundant data is the enemy of 
good database organization. 

Imagine an e-commerce store that sells software online; for each 
customer, we need the person’s name and e-mail address so we 
can send notifications, and for each product, we need the product 
name, price, and current inventory. Let’s start by doing things the 
wrong way: by shoving all this data into one big table.

With only one table to hold all the store’s information, if we want to 
track which customers bought which products, we may end up with 
something like Figure A.8.

 

In reality, we would need lots 

more information, such as user 

names and passwords and 

product manufacturers and their 

information, but even this greatly 

simplified example has plenty of the 

kinds of problems that result from a 

nonrelational approach. 

U n le a s h i n g  th e  G e e k  W ith i n   :  D ata ba s e



C o d i n ’  fo r  th e  w e bA-22

Fi g u r e  A . 8  An example of how not 
to organize data in a database table. 
Note the duplication of many pieces 
of information.

In Figure A.8, as in any database table, each horizontal row is a 
record (in this case, of a transaction), and each vertical column rep-
resents a data type associated with each of the records. At the inter-
section of the row and the column is the value—the piece of data of 
that data type associated with that record. 

In Figure A.8, each record has the user’s information first and the 
product information next. The first thing you will notice is how 
much information is repeated or not needed in this example of 
just six transactions: all of Suzie’s and John’s information appears 
twice, and information on two of the products appears twice. Also, 
we don’t need to keep track of the inventory like this; all we need 
to know is the current status of a product, not how many we had in 
stock before the previous sale. And this example uses only four cus-
tomers and five products; extrapolate this redundant data to thou-
sands of customers and thousands of sales, and you can see that 
even updating someone’s e-mail address might become a massive 
job. Also, what happens if one instance of the e-mail address gets 
changed but not another? It’s a recipe for confusion and unhappy 
customers.

The solution to this problem is normalization: the formalized pro-
cess of eradicating redundant data from a database. With no redun-
dant data, if a change has to be made, it needs to be made in only 
one place. Let’s normalize the data in Figure A.8.

We really have two sets of data records here—the customer infor-
mation and the product information—so let’s split them into two 
separate tables. After that, we can look at the actual transactions—
the sales of products to customers—which will need to be repre-
sented by some kind of relationship between the two tables. 

As we create our Customers and Products tables, we will give each 
record a unique identifying number (ID), known in database-speak 
as a primary key. The primary key can be any field in the table that 
is guaranteed to never repeat. It is also possible to assign an auto-
incrementing number to each row if no natural primary key exists. 
This is the case with our tables, as shown in Figures A.9 and A.10.



A-23

Fi g u r e  A . 9  The Customers 

Fi g u r e  A .10  The Products 

The first column of each table contains the primary keys, which 
provide unique references to each record in the table. If we delete 
a record (for example, if a product is no longer available and has to 
be removed), we will never use its primary key again. One reason 
why we must never reuse a primary key is that in our archives of 
previous sales, that key will still be associated with the discontinued 
product, so if we reallocate that primary key to a new product, a 
future audit of sales could be thrown into confusion. 

We are now in much better shape; if a customer’s e-mail address 
changes, we need to change it in only one place. If we want to serve 
up a list of all our products, our middleware simply has to grab 
every value in the product_name column of our Products table. 

Customers come to our store to buy products, and it’s our busi-
ness to keep track of those sales, so let’s now create a table of the 
transactions: the individual sales of products to customers. To avoid 
redundancy, we can’t put any actual customer or product informa-
tion in our Transactions table, or we will return to the problems we 
had in the earlier table with all its redundant data. Instead, we just 
reference each of the primary keys of the customers and product 
records, as shown in Figure A.1A.

Fi g u r e  A .11  The Transactions 
table.

Note that the first column of this table has a primary key for each 
transaction. The second and third columns list primary keys from 
the Customers and Products tables respectively. When we use the 
primary key of one table as a value in another table like this, it is 
referred to as a foreign key. We can think of each foreign key as a 
pointer to a record in another table, which indeed it is. 

 

As you will see when we look at 

SQL in more detail, you can set up 

database tables so the database 

knows that a particular column 

contains primary keys, and it will 

automatically allocate a new and 

unique primary key to each record 

as it is created. 

U n le a s h i n g  th e  G e e k  W ith i n   :  D ata ba s e



C o d i n ’  fo r  th e  w e bA-24

In our new Transactions table, record 1 shows that John Jones (cus-
tomer 103) bought Write-a-Lot version A.2 for Windows (product 
4789) on April 4, and it was shipped the following day. Take a close 
look at these three tables, and you will see that every piece of infor-
mation is unique or is a foreign key that points to unique data. Note 
particularly that the non-foreign-key data in this table is unique to 
the transaction itself and not to any other data type.

Structured Query Language: SQL
As mentioned earlier, we access the information in our carefully 
organized database tables using SQL. We can program our middle-
ware to request data by sending SQL queries to the database, and 
the requested data will be located and put into variables (data con-
tainers in memory) that the middleware can then read. 

We are going to explore how to write SQL queries in detail later, but 
here are a couple of examples to whet your appetite.

Let’s say, for example, that Suzie Q has used her e-mail address to 
log in to our site. We want to greet her onscreen, so we need her first 
name. Here’s what we need to do (or have SQL do for us): Go to the 
Customers table, search down the email column for Suzie’s e-mail 
address, and when we find it, return the corresponding first_name 
value from that record row (Figure A.12). 

Fi g u r e  A .12  A simple lookup of a 
name based on an e-mail address.

Here’s the SQL query that will accomplish this task:

SELECT first_name from Customers WHERE e-mail LIKE  
“sq@bcd.com”

As you can see, SQL is quite easy to read—at least for the more 
simpler queries. SQL can also handle more complex requests. Let’s 
imagine that Suzie wants to see a list of the products she has pre-
viously bought from us. We know her e-mail address, so what we 
would need to do (if we had to do this manually and didn’t have SQL 
to do it in a split-second for us) is the following:



A-25

1. 	 Go to the Customers table and look down the email column for 
the record that contains Suzie’s e-mail address. Then go across 
to the ID column to get Suzie’s customer ID—her record’s pri-
mary key (Figure A.13).

Fi g u r e  A .13  Find the ID based on 
the e-mail address.

2. 	 We have Suzie’s ID; now we go to the Transactions table, find 
every record that has Suzie’s ID in the customer column, and 
grab the corresponding product numbers for each record from 
the product column (Figure A.14).

Fi g u r e  A .14  Then find the 
associated transaction numbers.

3. 	 With our list of product IDs, we head over to the Products table. 
We look down the primary key column for each matching prod-
uct ID and return each matching record’s product_name value 
(Figure A.15). 

Fi g u r e  A .15  Then look up the 
product names.

4. 	 Now we pass those product names to the middleware to display 
on a page.

Write-a lot

MusicMaster

That might sound like a lot of steps, but it can be achieved with 
a single SQL query:

SELECT Products.product_name FROM Products JOIN 
Transactions JOIN Customers ON Products.id = 
Transactions.product AND Customers.id = Transactions.
customer WHERE Customers.e-mail LIKE ‘someguy@ithus.com’ 

U n le a s h i n g  th e  G e e k  W ith i n   :  D ata ba s e



C o d i n ’  fo r  th e  w e bA-26

SQL integrates very tightly with middleware products, so it’s easy to 
build queries based on user actions, pass them to the database, and 
then incorporate the returned data into calculations and process 
it or simply write it to an XHTML page to serve up to the user, as 
shown on Chapter 2 of Codin’ for the Web.

Database Summary
A relational database is a collection of tables. Each table contains 
a different data set (customer information, product information, 
book titles, book authors, software languages, and so on) that you 
determine based on the needs of the application you are designing. 
Tables are made up of horizontal rows known as records. Each verti-
cal column defines a type of data associated with the record. The 
item of data stored at the intersection of a record and a data type is 
called a value.

A defined procedure called normalization is used to ensure that 
tables do not contain redundant data—every data value, except for-
eign keys, is thereby unique.

Normalization requires that every record in every table have a pri-
mary key, which is a unique identifier, usually a number, for that 
record. Records in one table can be referenced from another table 
by their primary keys. A primary key used as a value in another table 
is, in that table, called a foreign key.

SQL enables the programmer to build, manage, and delete database 
tables and to add, edit, delete, and retrieve data from the tables.

Summary
This completes our overview of three-tier architecture and the prin-
ciples and software that are used to create it.  




