
C h a p t e r B

Coding the Interface

c o d i n ’ fo r th e w e bB-2

To make Codin’ for the Web usable for as many people as possible,
Ithe examples in the book and at its companion Web site use open
source software products. Open source software is generally devel-
oped collaboratively by loose affiliations of programmers and is dis-
tributed for free. I will discuss creating a Web site using open source
technologies collectively known as LAMP:

•	 Linux system software

•	 Apache Web Server

•	 mySQL database

•	 PHP middleware

All of these products can be downloaded for free from the Web and
together form a robust, well-tested, and thoroughly documented
platform for Web development.

Because we are discussing how to write code, not install and con-
figure software, we are not going to discuss the installation and
configuration of a LAMP platform here. If you are part of a large
organization, you probably have IT people who handle those details
for you, and if you are an individual just getting into Web develop-
ment, you may simply want to use a hosting service that offers PHP
and mySQL as part of their hosting packages.

Many Web hosting companies, including GoDaddy and 1to1, offer
low-cost hosting plans that include PHP and mySQL. If you sign up
for one of these plans, you can download, install, and run project
examples that are available here on the Codin’ for the Web Web site
(www.bbd.com/codin).

If you have a computer that is connected to the Internet and has a
static IP address and you want set up your own server, you can go to
http://www.apachefriends.org/en/xampp.html and download the
XAMPP package. It is a one-click installer for all four LAMP compo-
nents, and it includes an administration tool for mySQL so that you
can build and edit database tables.

XAMPP is available for Mac, Windows, and Linux, although the Mac
implementation is still a beta version at the time of writing. If you
are familiar with working on the command line in Windows or in
Terminal on Unix-based machines such as the Mac, you will prob-
ably have no problems getting the installation configured to your
needs; otherwise, you may want to get access to a system that is
already set up.

If you are working in the world

of Microsoft Windows, note that

.ASP and .NET, the two most widely

used Windows-based middleware

products, and SQL Server, the

Microsoft database, use the same

coding principles, and you need only

read a book on these products to see

the conceptual similarity between

coding for the LAMP and Windows

platforms.

B-3

Writing Code
You can code an entire Web site with a basic text editor such as
WordPad in Windows or TextEdit on the Macintosh—code is just
plain text, after all—but there some excellent tools that provide all
kinds of capabilities to help you. Adobe Dreamweaver is my Web
programming tool of choice (Figure B.1).

Some purists disdain Dreamweaver because of its WYSIWYG Layout
view, but I like Dreamweaver because of its code management fea-
tures, including the capabilities to do the following:

•	 Automatically color the different types of elements of the code
as you write, for easy identification and readability.

•	 Highlight many kinds of errors as you type, so you can debug as
you go.

•	 Insert common snippets of code that you can select from
menus as you work, saving lots of repetitious keystrokes.

•	 Pop up a related list of attributes you can pick for each tag as
you write it, saving you from guessing about which attributes
you can use.

•	 Format your code so its underlying structure is visually pre-
sented. For example, if you write a loop (a piece of code that

Fi g u r e B .1 Code in a text file and
the same code nicely displayed in
Dreamweaver.

Dreamweaver colors the different

elements of the code and wraps the

code nicely in the window so you

never have to scroll sideways.

C o d i n g th e I nte r fac e   :  W r iti n g C o d e

c o d i n ’ fo r th e w e bB-4

processes several pieces of similar data), Dreamweaver auto-
matically indents the lines within the loop, so you can clearly
see where the loop starts and ends. If you don’t appreciate this
feature now, you certainly will once you start to code.

•	 Use a built-in FTP client so you can move you files easily onto
your Web server.

I highly recommend investing in Adobe Studio, which includes
Dreamweaver, Flash for animation, and Fireworks for graphics, pro-
viding a comprehensive and integrated suite of tools for your site
development work.

Once you have your site set up in Dreamweaver and have verified
that you can successfully upload files to the Web server and display
them in the browser, it’s time to start building your site.

First, we’ll take a look at the basic principles of XHTML and CSS.

Using XHTML and CSS
This discussion of XHTML and CSS is not a comprehensive tutorial.
Many readers will have some familiarity with XHTML and CSS, and
the focus of Codin’ for the Web is on PHP, whose decision-making
capabilities and intelligent objects are the hallmarks of “real” pro-
gramming languages. Therefore, we are going to look at XHTML and
CSS only to a level that ensures that all readers are up to speed. We
will cover the basics, focusing on programming XHTML and styl-
ing that XHTML with lean CSS to achieve extensive control over the
presentation of our content without filling our XHTML markup with
extraneous presentation code.

If you want a more in-depth look at XHTML and CSS, I refer you to
my book Stylin’ with CSS, also published by New Riders.

A Web page is made up of XHTML elements. Elements either con-
tain or reference the content we want to display on the page. We
define each element—for example, as a paragraph, an image, a
check box, or a link—with an XHTML tag.

Here’s a paragraph:

<p>A simple paragraph</p>

B-5

Because a browser applies only very basic styling to markup, this tag
results in a dull-looking paragraph (Figure B.2).

Fi g u r e B . 2 Default browser styling
of a paragraph tag.

	

XHMTL is the mechanism by which you define the structure of your
site’s content, so that browsers and other user agents can display it
in an appropriate manner. XHTML enables you to indicate to the
user agent what each element is: a heading, a paragraph, a link, a
list, and so on. Every browser has a basic built-in style sheet that
enables it to display each of these in an appropriate manner.

Using CSS, you can determine the presentation of that XHTML
structure. Instead of using the browser’s default text styles (such as
headlines in a large Times font) and page layout (straight down the
page in one column), you can select other typefaces and type sizes
for text and create multicolumn layouts. For instance, CSS lets you
associate a list of properties that define elements such as these:

p {font-style:italic; font-weight:bold; color:red; border-
bottom:2px dashed blue;}

This results in the more eye-catching paragraph (Figure B.3).

Fi g u r e B . 3 Styling applied to a
paragraph element.

	

Writing Good XHTML
Writing good XHTML enables user agents to display your content
correctly. HTML was very forgiving of sloppy coding: you could
indicate the end of a content element such as a paragraph by simply
writing a tag for the next element. XHTML is not so permissive; its
rules require that you indicate the end of every element before start-
ing the next. This may seem cumbersome to those of us who got
away with the old methods for years, but today a Web site’s
content might be displayed on multiple user agent types, and per-
haps syndicated via XML and RSS feeds, so we need to be more
explicit in marking up our content to ensure that it is always dis-
played correctly.

User agent is the generic term for

browsers and a multitude of other

devices on which the Web is now

viewed, such as cell phones and

PDAs.

What happened to HTML, you

ask? The answer is that Extensible

Markup Language, or XML, came

along. XML is a format for moving

data between different applications.

XHTML is a reformulation of

HTML that complies with the

XML standard. It follows stricter

rules than HTML, however: rules

consistent with XML.

C o d i n g th e I nte r fac e   :  W r iti n g G o o d X HT M L

c o d i n ’ fo r th e w e bB-6

Most important, following the rules of XHTML provides a
structure to a document that complies with the Document Object
Model (DOM), which defines how underlying page structure should
be written.

According to the World Wide Web Consortium, the guiding body
of the Web’s development, the DOM is “a platform- and language-
neutral interface that allows programs and scripts to update the
content, style and structure of documents. The document can be
further processed and the results of that processing can be incor-
porated back into the presented page.” In other words, the DOM
provides a structure that allows the code in the Web browser to
be changed, or appear to be changed, without having to refresh
the page.

CSS and JavaScript are both designed to work within the frame-
work of the DOM. With a correctly formed page structure that meets
the requirements of the DOM, CSS and JavaScript can accurately
target any XHTML element, enabling you to set and change its
properties. This lets you use CSS to position and style onscreen ele-
ments, and use JavaScript to enable onscreen elements to respond
to user actions and even modify the markup itself without reloading
the page.

The key to a well-coded Web site, therefore, is the structure of the
XHTML—it’s the ironwork of the building on which everything
else hangs.

When writing XHTML, you need to make sure that the code you
write is valid and well formed. Valid code complies with the rules of
XHTML; you can (and should) check that a page is valid by upload-
ing it to your server and then typing its URLs in the validator at
http://validator.w3.org. Using the W3C validator is also a great way
to test and debug your markup.

Well-formed XHTML code is structured correctly according to the
markup rules, described in the following pages.

Writing XHTML Tags
As noted, the purpose of XHTML is to indicate the nature of each
piece of content and its position in the structure of the document.
To do this, you enclose each element of the content (heading, para-
graph, list item, and so on) in a pair of tags, known as the opening
and closing tags. A tag consists of an abbreviation of the element
name within angle brackets (also known as the less-than < and

B-7

greater-than > symbols). If we wanted to mark up the text “All about
XHTML” as a heading, we would write it like this:

<h1>All about XHTML</h1>

Note that the closing tag is identical to the opening tag except that
it has a forward slash as its first character. These tags are called
enclosing tags as the content is sandwiched between the opening
and closing tags.

Some tags are nonenclosing: they don’t enclose content, but simply
reference it. Here’s an example:

Note that while there is not a separate closing tag, there is a forward
slash before the closing angle bracket, indicating that the tag is closed.
If you don’t include the forward slash, your code won’t validate.

Specifying Tag Attributes
In the preceding example, the image tag has two attributes: src and
alt. Attributes provide additional information relating to the tag
and are structured in this example in a typical programming format:
property, delimiter, value.

src = “images/suzie_q.jpg”

Property ValueDelimiter

The property is the name of the attribute, the value is what the
property is set to, and the delimiter is a symbol (in this case, an
equals sign) that separates the property from its associated value.
The two attributes associated with this image are the source of the
image (its location on the server, provided so that the browser can
retrieve and display it) and the alternative text (which the browser
will display if the image fails to load, or which will be read aloud if
the site is being browsed by a user using a screen reader).

Until recently, tags also include presentation attributes, such as
FONT and COLOR, to create the desired onscreen appearance of the
element. Today, we avoid adding such attributes to the markup and
instead link a style sheet containing the presentation information to
the purely structural XHTML document.

C o d i n g th e I nte r fac e   :  W r iti n g G o o d X HT M L

c o d i n ’ fo r th e w e bB-8

Rules for XHTML Markup
There are nine simple rules for writing XHTML.

1.	 Declare a DOCTYPE.

Example:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0
Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd”>

A DOCTYPE is usually the first line of XHTML in a Web page,
and it lets the browser know what it is dealing with—HTML,
XHTML, or a bit of both. In the reality of today’s Web design,
there are really only two DOCTYPES that matter: Strict, mean-
ing that the page is pure XHTML, and Transitional, meaning
that older, deprecated (phased out but still valid) tags such as
FONT might be present in the page.

2.	 Declare an XML namespace.

Example:

<html xmlns=”http://www.w3.org/1999/xhtml”>

Usually, the namespace is a pointer to the World Wide Web
Consortium (W3C) Web site where a document type definition
(DTD) file can be found that helps the browser interpret the
XHTML.

3.	 Declare the content type.

Example:

<meta http-equiv=”Content-Type” content=”text/html;
charset=iso-8859-1” />

This line tells the browser what character set to use when dis-
playing the page. ISO-8859 is the Latin character set used by
English and other European origin language. You will need a
different character set declaration if your site is in a language
such as Chinese or Farsi.

4.	 Close every tag, both enclosing and nonenclosing.

Examples:

<p>This paragraph has a closing tag.</p>

The code for these first three

rules is generated automatically

by Dreamweaver if you select the

XHTML document choice in the New

> File dialog box and is part of the

templates available at the Codin’
Web site. If you have lots of time and

are a very accurate typist, you can

write this code yourself.

B-9

5.	 Correctly nest all tags.

Correct example:

<p>Correct nesting is very important</p>

Incorrect example:

<p>Be sure not to do this.</p>

Because the strong tag opened after the p tag opened, it must
close before the p tag closes. This structure ensures that the tags
have a properly formed hierarchy. CSS and JavaScript rely on
this hierarchy.

6.	 Don’t put block tags inside inline tags.

For example, placing a paragraph inside a link, as shown here,
breaks this rule:

<p>An invalid piece of code</p>

7.	 Write tags in lowercase only.

Correct XHTML:

Incorrect XHTML:

Quoted attribute values (such as “Picture of Rover”) can contain
uppercase letters.

8.	 Attributes must have values and must be quoted.

If you want to write valid XHTML (and you do), attributes must
be placed within quotation marks.

Example:

9.	 Use encoded equivalents (also known as entities) for & and <.

For &, use &

For <, use <

Because these two characters have special uses (starting enti-
ties and opening tags respectively), you must use the encoded
equivalents of them in your XHTML.

Entities are strings of characters that

create a single character onscreen.

They are useful for writing accented

characters and symbols such as © and

£. Entities start with an ampersand

and end with a semicolon (for

example, the copyright symbol

entity is ©). You can find a list

of these and other entities at the

Web Design Group Web site: www.

htmlhelp.com/reference/html40/

entities.

C o d i n g th e I nte r fac e   :  W r iti n g G o o d X HT M L

c o d i n ’ fo r th e w e bB-10

Coding the Interface
So we can get started building a dynamic site, let’s build a page tem-
plate using XHTML and CSS.

If you want to follow along, create a new XHTML document and
save it as xhtml_template.html or some similar name.

Let’s start by coding the basic XHTML page structure.

<?xml version=”1.0” encoding=”iso-8859-1”?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//
EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

 <title>Codin’ - Sample XHTML Page</title>

 <meta http-equiv=”Content-Type” content=”text/html;
charset=iso-8859-1” />

</head>

<body>

 <!-- comment - content goes here -->

</body>

</html>

You can find this page structure

template in the Chapter B files at

the Codin’ Web site, or you can let

Dreamweaver generate it for you

when you create a new page.

Adding Comments to Your Code

You can add comments to your code to help you remember what the code
does when you review it later. I strongly recommend that you add lots of
comments to your code. XHTML comments are not visible to the user unless
the user views your source code by selecting View Source from the browser’s
View menu. Comments within HTML are written like this:

<!-- this is an XHTML comment -->

Within CSS, they are written like this:

/* this is a CSS comment */

C o d e B .1 : xhtml_template.html

B-11

Because all content the user sees in a Web page goes between the
body tags, and there is presently only a comment between those
tags, you only see a blank page if you display this page in a Web
browser, so let’s now add some content between the body tags
(Figure B.4).

<body>

 <h1>This is a heading</h1>

 <p>This is a paragraph of text</p>

 read more

</body>

Fi g u r e B .4 Three XHTML elements
displayed in browser.

	

These three elements are displayed in the Times typeface; the head-
ing is large and bold, and the paragraph is displayed in smaller type.
The link is displayed blue and underlined. These styles are set by the
browser’s internal CSS style sheet. The internal style sheet defines
some basic styles for each type of XHTML element. These styles are
applied unless you modify them in a style sheet that you author; an
author’s style sheet loads after the browser’s style sheet, as we will
see shortly. For now, just remember that the browser has default
(preset) styles for each XHTML element that are intended to provide
a basic visual and hierarchical layout—for example, each heading,
h1 through h6, is styled sequentially smaller than the last, and head-
ings are larger than other text.

The two elements, the heading and the paragraph, sit one above the
other. This is not because they are on separate lines in the markup;
if you put them on the same line, they would still sit above one
another when displayed in the browser. They appear one above the
other because headings and paragraphs are both block elements.

C o d i n g th e I nte r fac e   :   C o d i n g th e I nte r fac e

C o d e B . 2 : basic_xmhtml_
markup1.html

c o d i n ’ fo r th e w e bB-12

About Block Elements
Block elements are by default set to the CSS width property of
auto, which sets blocks as wide as possible, so they stretch across
the width of the browser and change width as the browser width is
changed by the user. They also always appear stacked one above
another in the browser window, unless you use CSS to change them
to inline elements (this is done with the CSS display property).

About Inline Elements
Inline elements, by contrast, appear next to each other on the same
line and wrap to a new line only if there is no room on the current line.
Links and images are examples of inline elements. You can see this
inline behavior by adding some links before the two block elements.

<body>

 Link 1

 Link 2

 Link 3

 Link 4

 <h1>This is a heading</h1>

 <p>This is a paragraph of text</p>

</body>

Figure B.5 shows the results.

Fi g u r e B . 5 Links are inline
elements and appear next to each
other on the same line.

	

C o d e B . 3 : basic_xhtml_markup2.
html

B-13

Code Element Boxes
Each element, whether block or inline, is actually a box with its
content inside it. Block element boxes default to the width of the
browser, and inline element boxes always shrink to fit their contents
and so are only as wide as whatever they contain.

We can accurately size and position these element boxes to create
page layouts with CSS, and we can style these boxes with borders,
margins, and padding to position the content within them.

Both block and inline elements are only as tall as they need to be to
enclose their contents.

To see element boxes in action, let’s add some CSS styles to our
page (of embedded styles) to see where these boxes actually are.

Modify the code between the head tags to look like this:

<head>

 <title>Codin’ - Sample XHTML Page</title>

 <meta http-equiv=”Content-Type” content=”text/html;
charset=iso-8859-1” />

<style type=”text/css”>

a {border:1px solid green;}

h1 {border:1px solid red;}

p {border:1px solid blue;}

</style>

</head>

Setting Link Placeholders

In these links, I have used the # character in place of a URL for now. This is
valid coding and creates a handy placeholder; in dynamic sites, the exact
URL—the place to which the link links—is almost always determined later
in the programming process and may even be generated by the code itself as
the user navigates the content. If you leave the href attribute as an empty
string—quotation marks with nothing inside—as you might be tempted to do
if you are using the link to trigger a JavaScript function, the link will not respond
to CSS styles, such as a rollover highlight, when the user interacts with it.

For now, we are going to add CSS

directly to the head of the page

we are working on, as it makes

simultaneously developing the

XHTML and the CSS easier. Later,

we will move these CSS styles to a

separate style sheet, so the styles can

be shared by many pages.

C o d i n g th e I nte r fac e   :   C o d i n g th e I nte r fac e

C o d e B .4 : basic_xhtml_markup3.
html

c o d i n ’ fo r th e w e bB-14

The style tag with the text/css attribute tells the browser to stop
treating the code as XHTML and to treat it as CSS. When the style
tag is closed, the browser reverts to interpreting the code as XHTML.
This is a first taste of how we can mix programming languages in
our work to achieve the desired onscreen result.

Inside the style tag, you can see three styles that set one-pixel-thick
borders for each of the three kinds of tags in our markup (Figure
B.6). Each has a different color.

Fi g u r e B . 6 Borders around the
elements.

	

Note that these boxes are vertically separated. What stops them
from touching are the margin styles that the browser’s style sheet
is applying to them. Margins create a buffer of space around an
element’s box. One of the first things I do when writing CSS is get rid
of these default margins that are applied to almost every element; I
plan to style this XHTML myself, and I’ll decide what has margins,
thank you very much.

The way to remove these default margins is to use the CSS selector
* (Shift-8), which means select “any element.” While removing the
default margins, I also remove the default padding, with one very
short line of CSS.

<head>

 <title>Codin’ - Sample XHTML Page</title>

 <meta http-equiv=”Content-Type” content=”text/html;
charset=iso-8859-1” />

<style type=”text/css”>

* {margin:0; padding 0}

Margins create space between

element boxes, and padding creates

space between an element box and

its content.

C o d e B . 5 : basic_xhtml_markup4.
html

B-15

a {border:1px solid green;}

h1 {border:1px solid red;}

p {border:1px solid blue;}

</style>

</head>

The elements now not only touch vertically, but also go right to the
edge of the browser, because we have removed the margin from
the body element. The body element is always the same size as the
browser window and, as you can see in Figure B.7, has a small
margin applied to it so that an unstyled element does not touch the
edge of the browser window.

Fi g u r e B .7 All default margins have
been removed from the elements.

	

Using div Tags to Give Content Structure
You may have wondered, as you browsed a link-rich news site such
as CNN or The Onion, how a single page can have so many differ-
ent link styles. Giving the same element different styles on the same
page is achieved by using contextual CSS selectors. These allow us
to write styles that state that links within one context have one kind
of appearance, and links within another context look different. This
context is usually supplied by XHTML div tags with id attributes.

A div (short for division) element can be thought of as a neutral
element—that is, it has no default styles and therefore has no vis-
ible effect unless we explicitly style it. It’s typically used to enclose a
number of related XHTML elements.

<div id=”div_name”>

 <!-- a number of XHTML elements go here

</div>

C o d i n g th e I nte r fac e   :   C o d i n g th e I nte r fac e

c o d i n ’ fo r th e w e bB-16

Using the id attribute, we can give each div tag, and thereby each
section of our markup, a unique name. By referencing the id value,
we can target our CSS (and JavaScript) to the elements inside it,
without affecting other elements of the same kind elsewhere in the
markup.

A div tag creates a box just like other elements and can be styled
to, say, provide a border around a group of navigation links that it
encloses. Let’s see this in action.

<body>

<div id=”navigation”>

 Link 1

 Link 2

 Link 3

 Link 4

</div>

<div id=”content”>

 <h1>This is a heading</h1>

 <p>This is a paragraph of text</p>

 read more

</div>

</body>

Now the fun begins.

First, we’ll delete the styles that added the borders to the div struc-
tures, and then we’ll temporarily add a style that puts 20 pixels of
margin all around the body so our content isn’t right against the
edge of the browser window.

<style type=”text/css”>

* {margin:0; padding:0;}

body {margin:20px;}

</body>

We added a link after the paragraph

so we can see how links in different

div contexts can be styled differently.

C o d e B . 6 : basic_xmhtml_
markup4a.html

B-17

We’ll add font-family and font-style styles for each div structure.

<style type=”text/css”>

* {margin:0; padding:0;}

body {margin:20px;}

div#navigation {font-family: Verdana, Arial, Helvetica, sans-
serif; font-size.8em}

div#content {font-family:Georgia, “Times New Roman”, Times,
serif; font-size:.75em}

</body>

Figure B.8 shows the results.

Fi g u r e B . 8 Div tags allows us to
organize our XHTML elements into
logical groups and style elements of
the same kind—links in this case—
in different ways.

	

Font styles are inherited, so all the elements inside the div struc-
ture take on these styles once we apply them to the parent div ele-
ment—we don’t have to apply them to every child element. The
default browser font size is 1 em, and all our sizes are inherited from
it; if we set a font size of 0.9 em, it will be displayed at nine-tenths
the default size. The em is a proportional font size—if we change
the font size of the body, then the size of all the child elements
(everything in our markup) will change size proportionately. Using
proportional font sizes, in contrast to fixed sizes such as pixels, also
allows users to change the overall type size of the site from their
browser menu in the same way that restyling the size in the body
tag does, which is very helpful for low-vision users. Here we have
reduced the size of the type in the navigation links to 0.8 of the
default font size.

C o d i n g th e I nte r fac e   :   C o d i n g th e I nte r fac e

C o d e B .7 : basic_xhtml4a.html

c o d i n ’ fo r th e w e bB-18

Now we’ll style the navigation links and the content link with two
completely different looks. To do this, each rule we write leads off
with the context in which the tag is located. Here, the # character
refers to the ID.

<style type=”text/css”>

* {margin:0; padding:0;}

body {margin:20px;}

div#navigation {font-family: Verdana, Arial, Helvetica, sans-
serif;}

div#navigation a:link {color: #CCC; background-color:#666;}

div#navigation a:hover {color: #FFF; background-color:#333;}

div#content {font-family:Georgia, “Times New Roman”, Times,
serif;}

div#content a:link {color: #FF3300;}

div#content a:hover {text-decoration: none;}

</style>

In this way, we can write one set of styles for the navigation div
links, and another set of styles for the content div links. Here we
use the :link (not rolled over) and :hover (rolled over) CSS pseudo-
classes to give a visual response when the user rolls the mouse
pointer over the links (Figure B.9).

Fi g u r e B . 9 Because the links have
different div contexts, they can be
styled to look and behave differently
(the underlining would disappear
from the red link when the user rolls
the mouse over it).

	

B-19

Creating Navigation Elements
Navigation elements are a list of links from which the user can
select. It’s good practice to mark them as an XHTML list, like this:

<div id=”navigation”>

 Link 1

 Link 2

 Link 3

 Link 4

</div>

We’ve seen the basic concepts of block and inline elements, so now
we’re going to remove the demonstration styles for these links. With
the links correctly marked in an unordered list, we’ll see how to use
some real-world styles to create a nice navigation component from
this markup, with every line commented so you can understand
what it takes to style something that you might actually want on
your Web site. If you have been following along, you can trash the
styles you currently have and open a file with the following code:

* {margin:0; padding:0;}

body {margin:20px;}

div#navigation {

 width:150px;

 background-color:#CCCC99;

 border:1px solid #999966;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-size:.8em

 }

div#navigation ul {

 margin:12px 10px;

 border-top:1px dotted #999966;

 }

Set width of nav element

Set background color of div

Set border of nav element

Set font of nav element

Set font size of nav element

Space around menu items on
background

Add a line over the first item in the
menu

C o d i n g th e I nte r fac e   :   C o d i n g th e I nte r fac e

C o d e B . 8 : basic_xhtml_
markup6a.html

c o d i n ’ fo r th e w e bB-20

div#navigation li {

 list-style-type:none;

 border-bottom:1px dotted #999966;

 }

div#navigation a:link {

 display:block;

 padding:3px 10px;

 color: #666600;

 text-decoration:none;

 }

div#navigation a:hover {

 color: #000;

 text-decoration:underline;

 background-color:#CCCC66;

 }

div#content {

 font-family:Georgia, “Times New Roman”, Times, serif;

 font-size:.75em;

 }

div#content a:link {

 color: #FF3300;

 text-decoration:none;}

div#content a:hover {

 text-decoration:underline;

 }

Figure B.10 shows the results.

Remove the bullets from the list

Add a line under each menu item

Change the link elements from
inline (default) to block so they fill
the ‘li’ elements

Create t/b & l/r space around the
the link text—indents text from
start of lines

Sets link color

Remove link underlining

Color of type when rolled over

Underlines type when rolled over

Changes background color when
link is rolled over

Different font family for content

Set overall font size for content

Link color

No underlining on link

Adds underlining to link when
rolled over

B-21

Fi g u r e B .10 The addition of
background styles for the div
and border styles for the ul and li
elements unify these elements into a
navigation component.

	

Creating a Multicolumn Page Layout
We’ve seen how the boxes of XHTML elements are organized
onscreen by default and how to apply some basic styles to them—
now let’s style the elements as a group to create a more pleasing
layout.

Almost always, you’ll want more than one vertical column in your
page design. The most common reason is so you can have naviga-
tion links down the left side of the screen, or somewhere else if you
dare break this common convention, so let’s create a simple two-
column layout with CSS.

Setting the Width of Elements
We’ve already set the width of the div tag that contains the list of
links to 150px and switched the display property of the links them-
selves to block. Inline element boxes are only as big as the content
inside them, but we want to make those links take on the auto width
of block level elements, so that the whole area of the li element
becomes filled with the link, and the entire area of the list item
becomes “hot” (responds to rollovers), not just the text itself.

C o d i n g th e I nte r fac e   :   C o d i n g th e I nte r fac e

c o d i n ’ fo r th e w e bB-22

Setting the width of block elements is the first step in creating page
layouts with more than one column. For this example, let’s create a
two-column layout that is 700 pixels wide, using a width of 150 pix-
els for the navigation area, which we have already set, and a width of
550 pixels for the content area, which we will set next (Figure B.11).

div#content {

 width:550px;

 border: 1px solid;

 font-family:Georgia, “Times New Roman”, Times, serif;

 font-size:.75em;

 }

Fi g u r e B .11 The navigation and
content area elements now have
their widths defined.

	

Now we have the two elements set to the required widths. All we
have to do is get them to sit next to each other instead of under
one another. The easiest way to accomplish this is to float both
elements. Float is a property that is commonly used to wrap text
around images or other elements, which we can see by floating just
the navigation div element (Figure B.12).

div#navigation {

 width:150px;

 float:left;

 margin: 0 6px 6px 0;

Temporary style so we can see
div width

Set width of nav element

Moves nav up and to left as far as
possible within containing body
element

Small margin on right and bottom of
element stops content div text from
touching it

C o d e b . 9 : basic_xhtml7.tif

C o d e b .10 : basic_xhtml8.tif

B-23

 background-color:#CCCC99;

 border:1px solid #999966;

 }

Fi g u r e B .12 Floating the navigation
element causes the text in the
content element to wrap around it.

	

Figure B.12 shows more text added to the content div element so
you can see that once the text gets below the floated navigation div
element, the text wraps around it.

The simple way to make the content div element a column instead
of having it wrap under the navigation div element is to float it, too
(Figure B.13).

div#content {

 width:550px;

 float:left;

 border: 1px solid;

 font-family:Georgia, “Times New Roman”, Times, serif;

 font-size:.75em;

 }

Fi g u r e B .13 Floating both the
navigation and the content div
elements is a simple way to create
two columns.

	

Set background color of nav element

Set border of nav element

Floating this div as well as the nav
div forms two columns

C o d i n g th e I nte r fac e   :   C o d i n g th e I nte r fac e

C o d e b .11 : basic_xhtml9.tif

c o d i n ’ fo r th e w e bB-24

The problem with a floated-columns layout is that if the browser
window is very narrow, there is no longer room for the two columns
to sit side by side, and the content column will move under the
navigation column (Figure B.14).

Fi g u r e B .14 The floated elements
will stack if there is not enough room
for them to sit side by side.

	

Fortunately, the problem of stacked elements is easy to fix. We just
wrap a new div element around both columns and fix its width. We
add our wrapper div element to the markup right inside the body
tags, like this:

<body>

<div id = “wrapper”>

<div id=”navigation”>

 Link 1 and…

…element.</p>

 read more </div>

 </div><!--end of wrapper div-->

</body>

Big chunk of markup removed here
to save space

C o d e b .12 : basic_xhtml10.tif

B-25

Then we add styles for this new element.

div#wrapper {

 width:712px;

 float:left;

 }

Figure B.15 shows the results.

Fi g u r e B .15 The fixed width
wrapper prevents one column from
moving under the other, even when
the browser window is narrower
than the layout, as shown here.

	

I made the wrapper 712 pixels wide instead of 700 because there
are 6 pixels of padding on each side of the navigation element, add-
ing an extra 12 pixels of width to the layout. You have to allow for
every pixel in the width when you set the wrapper width, because if
the wrapper div element is too narrow, it will squeeze the columns
under each other no matter how wide the browser is set. That said,
the wrapper doesn’t have to be a snug fit; you could set it to 750
pixels to allow for later alterations to the width of the contained ele-
ments, and it would still do its job of protecting the columns from
getting squeezed under one another if the browser window is made
narrow by the user.

Note that the wrapper is also floated; div elements don’t normally
enclose floated elements, but floating the wrapper itself makes it
enclose the floated columns.

Floated left to ensure it encloses
the floated nav and content divs

The “floated columns” technique is

just one of several ways to create a

multicolumn page layout. See my

book Stylin’ with CSS, also from

New Riders, for a number of other

approaches. You can also learn

more about page layouts with CSS

at http://css-discuss.incutio.com/

?page=CssLayouts.

C o d i n g th e I nte r fac e   :   C o d i n g th e I nte r fac e

c o d i n ’ fo r th e w e bB-26

Adding a Header
Most sites have a banner across the top of the page to identify the
site (provide orientation), so we will add one here. The graphic we
will use was created in Adobe Fireworks and is 72 pixels high and
712 pixels wide.

<body>

<div id = “wrapper”>

<div id=”header”><!-- --></div>

<div id=”navigation”>

 …etc….

div#header {

 width:712px;

 height:72px;

 background-image:url(images/codin_header.gif);

 text-align:center;

 }

We created a header div tag in the markup but put only a comment
in it. As you can see, the graphic is added via the CSS as a back-
ground element. What’s neat about working this way, rather than
adding the graphic to the markup with an image tag, is that we can
add text (or images) in the markup of the header div tag later, and
it will overlay the background graphic that we have just set in
the CSS.

Figure B.16 shows our results.

C o d e b .13 : basic_xhtml11.tif

B-27

Fi g u r e B .16 The header added and
some color changes in the navigation
area to make it match the new colors.

	

Completing the Layout
That completes the structure of this simple two-column layout. Now
it’s time to add some content and style it into a more complete page
(Figure B.17).

Fi g u r e B .17 Some real-world
content and several small
refinements to the CSS get us close to
a usable template.

	

I’ve made a number of changes here, most notably adding some
real content, including an unordered list in the content div element.
and reworking the styles accordingly. I also set a single font family
for the entire page in a single declaration in the CSS body rule;
because this is the topmost, parent element, all the other elements
inherit this font, so I can remove the other font-family styles that
I had elsewhere.

C o d i n g th e I nte r fac e   :   C o d i n g th e I nte r fac e

c o d i n ’ fo r th e w e bB-28

I also made some changes to the margins for some of the elements
to get everything better aligned.

You can see all these changes in this final version of the code.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//
EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

<meta http-equiv=”Content-Type” content=”text/html;
charset=iso-8859-1” />

<title>Codin’ - Sample XHTML Page</title>

<style type=”text/css”>

* {margin:0; padding:0;}

body {margin:20px; font-family:Geneva, Arial, Helvetica,
sans-serif;}

div#header {

 width:712px;

 height:72px;

 background-image:url(images/codin_header.gif);

 border-bottom:#067EC5 2px;

 }

div#wrapper {

 width:712px;

 float:left;

 border: 1px solid #067EC5;

 background-color:#F1F8FF;

 }

div#navigation {

 width:150px;

 float:left;

Floated left to ensure it encloses
the floated nav and content divs

Set width of nav element

Moves nav up and to left as far as
possible within containing body
element

C o d e b .14 : basic_xhtml12.tif

B-29

 margin: 20px 6px 6px 10px;

 background-color:#CEF0FC;

 border:1px solid #067EC5;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-size:.8em

 }

div#navigation ul {

 margin:12px 10px;

 border-top:1px dotted #999966;

 }

div#navigation li {

 list-style-type:none;

 border-bottom:1px dotted #999966;

 }

div#navigation a {

 display:block;

 padding:3px 10px;

 color: #000;

 text-decoration:none;

 }

div#navigation a:hover {

 color: #000;

 text-decoration:underline;

 background-color:#CEF0FC;

 }

div#content {

 width:490px;

 padding:1em 20px;

 float:left;

 font-size:.75em;

Small margin on right and bottom of
element stops content div text from
touching it

Set background color of nav element

Set border of nav element

Set font of nav element

Set font size of nav element

Create t/b & l/r space around menu
items on background

Add a line over the first item in the
menu

Add a line under each menu item

Remove the bullets from the list

Change the link elements from
inline (default) to block so they fill
the li elements

Create t/b & l/r space around the
the link text—indents text from
start of lines

Sets link color

Removes underlining

Color of type when rolled over

Underlines type when rolled over

Changes background color when
link is rolled over

Floating this div as well as the nav
div forms two columns

C o d i n g th e I nte r fac e   :   C o d i n g th e I nte r fac e

c o d i n ’ fo r th e w e bB-30

 }

div#content h1 {

 margin-top:2px;

 color:#067EC5;

 }

div#content ul {

 margin:1em 20px;

 }

div#content li {

 list-style-type:none;

 margin:0 0 .5em 0}

div#content a {

 color: #1A78BE;

 }

div#content a:hover {

 text-decoration:none;

 }

</style>

</head>

<body>

<div id = “wrapper”>

 <div id=”header”>

 <!-- -->

 </div>

 <div id=”navigation”>

 Link 1

 Link 2

 Link 3

 Link 4

B-31

 </div>

 <div id=”content”>

 <h1>Dynamic web sites</h1>

 <p>A dynamic web site can accept and process user inputs
and then deliver generated pages back to the browsers based
on the results of the processing.</p>

 <p>Dynamic web sites typically comprises three primary
components: the interface, the middleware, and the database.
Creating dynamic web sites requires the use of several
programming technologies, such as:</p>

 XHTML - a tagging scheme for defining
the structure of content

 CSS - a mechanism for adding style to
web documents

 JavaScript - a scripting language
embedded in HTML web pages to addd functionality

 PHP - a server-side scripting language
for the creation of dynamic web pages

 SQL - a database access language

 <p>Learn the fundementals of creating dynamic sites by
reading Codin’ for the Web, a New Riders book by
Charles Wyke-Smith. Don’t forget to join the
Codin’ mailing list!

</div>

<!--end of wrapper div-->

</body>

</html>

C o d i n g th e I nte r fac e   :   C o d i n g th e I nte r fac e

c o d i n ’ fo r th e w e bB-32

Moving the Styles to a Style Sheet
The embedded styles within the style tag affect only this page: the
page in which they are included. The next step is to move these
styles into a style sheet that can be shared by many pages. This
is where CSS really comes into its own, because it allows you to
change the look and feel of an entire site by changing a single file.

1. 	 Create a new folder called css in the same folder as the XHTML
document that you have been working on.

2. 	 Create a new text document, copy and paste all the styles
between the <style> and </style> tags into this new document,
and save it into the css folder with the name codin_styles.css.

3. 	 Delete the style tags and all the styles between them from the
XHTML document.

4. 	 Link the document to the style sheet, by inserting the following
into the head of the XHTML document (for example, right after
the title tag):

<link type=”text/css” href=”css/chapterb_example.css”
rel=”stylesheet” />

When you do this, any graphics referenced from the styles (such
as the header graphic in this example) will now have a different
relative path. When the styles were in the head of the page, this
was the background image URL:

div#header {

 width:712px;

 height:72px;

 background-image:url(images/codin_header.gif);

 border-bottom:#067EC5 2px;

 }

Now that we have moved the CSS into a separate .css document
in a different folder (the new css folder we just created), the
relative path to the images folder needs to be modified.

B-33

5.	 Change the path to the images folder to this:

background-image:url(../images/codin_header.gif);

The ../ means “up one folder.”

6.	 Preview the page.

It should look just as it did before. (If it doesn’t, it’s probably
because you don’t have the file name correct, the file is not in
the right place, or the path is wrong.)

Now all you have to do is add this link tag to the head of any XHTML
page (you may need to tweak the URL if it is in a different folder),
and it too will take on the formatting defined in the style sheet.

Summary
This completes this brief overview of XHTML and CSS. Now you can
move on to PHP, a language that, in contrast to XHTML and CSS, is
capable of accepting and processing data and generating XHTML
pages that are then displayed in the user’s browser. TChapter 1 of
Codin’ for the Web introduces basic coding concepts that apply to
PHP—and to almost any programming language you may encounter.

C o d i n g th e I nte r fac e   :  s u mm ary

